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NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN SEMICONDUCTOR DEVICES
AND STRUCTURES.
3. MODELING OF MIS STRUCTURES

I. I. Abramov and V. V. Kharitonov UDC 621.382.82.001:519.95

A universal algorithm for multidimensional numerical analysis of unipolar semi-
conductor devices is studied.

The theoretical study of unipolar semiconductor devices is at the present time most often
carried out employing numerical models based on the solution of the equations of continuity
for holes and electrons and Poisson's equation for the electrostatic potential [1].

It is sufficient to cite only some works on the multidimensional analysis of MOS transis-
tors with short channels. Thus in [2, 3] the mechanisms of avalanche breakdown were studied;
in [4] the effect of the spread in a number of the electrophysical parameters (channel length,
impurity concentration in the substrate, depth of the p—n junction, etc.) on one of the basic
parameters — the threshold voltage — was studied; in [5, 6] the effect of adjoining was studied,
etc. Naturally, the importance of such studies increases with the transition to the submicron
technology for fabricating integrated circuits because of the complexity of the experimental
development of such circuits.

One of the basic difficulties standing in the way of the assimilation of numerical experi-
ments in practice is the lack of efficient and reliable universal algorithms for the multi-
dimensional numerical analysis of unipolar semiconductor devices. Thus the most efficient
algorithms and programs [7, 8], based on Mock's method [9], do not permit carrying out a rigor-
ous calculation of devices in prebreakdown operating states [3] and taking into account the
mechanisms of surface recombination [10]. This is linked with the fact that in Mock's method
[9] it is assumed that there is no recombination-generation term in the equation of continuity.
Algorithms which do not have this drawback either make use of additional physical assumptions
[11] or they require supercomputers [12] or they require dense grids in the neighborhood of
the insulator—semiconductor interface [13]. The latter circumstance, naturally, places the
problem of selecting a grid at the forefront [14].

In this work we propose a universal algorithm for the multidimensional numerical analysis
of the static states of unipolar semiconductor devices, based on the method of [1] and not
having the above-mentioned drawbacks. The efficiency of the algorithm is illustrated for the
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example of a two-dimensional numerical analysis of an n-channel MOS transistor using a coarse
spatial grid.

In the stationary state the problem under study consists of solving the fundamental sys-
tem of equations from the physics of semiconductor devices [1] with the boundary conditions,
formulated very completely in [13]. In the case when Boltzmann's statistics are valid the
Poisson equation for unipolar semiconductor devices is usually written in the form (for the
semiconductor and insulator, respectively)

eV = q1n; exp [(§ — Dr)/ar] — 1y exp (D — $)/g,] — N, -+ N, (1)
SiVElP = ‘Oi .

The most important conditions for the algorithm are the conditions at the insulator—semicon-
ductor interface [13, 151]:

Jpe = QR (p, 1y ) = — s, 2)
g+ Inx = J12 =0,

where the model of surface recombination has, as an example, the form [16] RS = A(pn — ni?),
while

& (09/0%) ;— & (09/0x); = T, 3

Ogur = 4Dy, (Ygur — v)/e,,
which for accuracy we supplement with
(0%/0y)g = (0)/0Y); - “

Equations (3) and (4) follow from the Gauss—Ostrogradskii theorem for the interface of two
media oriented parallel to the y axis. The algorithm can be easily extended to the general
case, when the interface is not parallel to the y axis.

We shall study Poisson's equation (1) with the boundary conditions (3) and (4). To ob-
tain a finite-difference analog of (1) at the insulator—semiconductor interface (Fig. 1),
just as in [17], except that there the case ogyr = 0 was considered, the expansion ¢Iu—1,j and
VIo41,5 in a uniform medium in a Taylor series, including also the second derivatives, was
used. The latter terms are eliminated by using Poisson's equation in the semiconductor (for
¢Io+1,j) and in the insulator (for on—l,j)’ (3), and the properties of continuity (conserva-
tion) of the tangential components of the electric field (4). Mathematically, this approach
for approximating the boundary conditions is more accurate than the approaches usually used
(the expansion includes only the first derivatives of ¢) [18]. From the physical viewpoint,
which should be specially emphasized, it includes all equations [including also (4)] charac-
terizing the electric properties of the interface of the two media. It may therefore be ex-
pected that the approximation of Poisson's equation at the insulator—semiconductor interface
will have a higher degree of stability. This should alleviate the problem of selecting the
spatial grid in this region.
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As a result, the finite-difference analogs of Poisson's equation assume the form

Ai,j Wit +Bi,i¢i+l,i + D,-,,-‘Pi,j_, + Ei,j“pi,j—i—l s Ci,jlpi,j = Fi,j’ (5)
where
Al._]. = hi+1 6”; Bl.,]. = Ny Ciy]. = — [hi+l 6[.’].(1 -1 hzfl-,,-/ﬁi)*i‘/li -+ Sin.,].]:, o)
. . | ) 6
Wi,f: hl+1]ll/(k1k]+l)’ Si—'-’: hl‘—l—l”“« hiéi,]"

L= b bl k) Dy =1, Sk, E, =1, Sifk,,;

N
fi,j“": qln;exp [(‘pi,]"~ CD,Zi,]-)/(PT] — n; exp [((Dp;,]- - wi,j)/(PT] - Nii,j'}'Nai,j]/Ss.
Here 6i,j, ri,j, and Fi,j are given by

8, = Si /88” r; g DStQ/CPT,

i,

(7)
F= O.5hl.2+1hi [fl.’].—Q (rl.,].\p?’].— O-5hipiz,,-)/(hi+1€g )
for the insulator—semiconductor interface (i = I,); by
6hi:l’ruf:0’ F@f:Q5EJmm+Km4‘%+J (8)
for the semiconductor; and by
8, =L 1., =0, Fiy=050, hih, (b Ve, (9)

for the insulator.

The boundary conditions at other boundaries, because of their linearity, are taken into
account by changing the corresponding coefficients in (5). Thus, in the course of the solu-
tion of (5), the boundary conditions are satisfied automatically [19]. This method can be
called the implicit treatment of the boundary conditions and is preferable to the explicit
method [20], especially for nonlinear boundary-value problems, because of its absolute stabil-
ity to roundoff errors which arise in the computational process.

In what follows Egs. (5)-(9) are quasilinearized with respect to 8y using the Boltzmann
statistics, as done in Gummel's method [21]. This leads to the matrix equation

Aw&lp = “‘FllJ(lp’ n, p) (10)

The derivation of the elements Ay, Fy from Egs. (5)-(9) does not present any difficulties
and is omitted in this work. We note that the described method for taking into account the
boundary conditions can be used together with the approach proposed in [22] to the finite-
difference approximation of Poisson's equation.

For the equations of continuity (Eqs. (2) and (3) from [1]) the quasilinearization with
fixed ¥ of their discrete analogs with respect to én and 8p is used taking into account the
nonlinearity of the problem (with respect to the boundary conditions and Rp and Rp). A
formulation of the Sharfetter—Gummel type [1] is used in the finite-difference approximation
of the continuity equations. The boundary conditions [including also (2)] are also quasi-
linearized, after which, as done previously, the coefficients of the Jacobi matrices Ap and
Ap are changed:

Aubn=—Fu(n, p. ¥), (11)

Abp=—F,(n p, ¥).

%P p(n p W (12)
Equations (11) and (12) are the discrete quasilinearized analogs of the equations of con-
tinuity for which the boundary conditions are satisfied automatically.

The solution algorithm, implementing the generalized two-step VRS method [1] in a basis
[1] of the basic variables ¥y, n, and p which is convenient for practical implementation has
the following form: 1) the initial approximation for ¥, n, and p over the structure of the
device over corresponding regions is given; 2) Poisson's equation is solved for ¢ using New-
ton's method with fixed Qn, Qp: a) m = 1, where m is the number of Newtonian iterations
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(step 2); b) the quasilinearized (using Boltzmann statistics, i.e., with fixed Qn, Qp) finite-
difference analog (10) of Poisson's equations (5)-(9) is solved for &§y™; c) the new values

of i+l = yM 4 §yM  the concentrations n™! = nMexp (§yM), p™! = pMexp (—8y™), the diagonal
elements of Jacobi's matrix Ay™'!, and the discrepancies Fy™!, m = m + 1 are found; d) the
substeps b and ¢ of step 2 are repeated a fixed number of times or in accordance with the
criterion |[8y®|max/|8¥mt!|nax 2 K (where K = 10); 3) the equations of continuity with fixed

¥ are solved simultaneously by the method of vector relaxation of systems (VRS): a) ¢ =1,
where & is the number of VRS iterations® with simultaneous solution of the equations of con-
tinuity, Sec. 3; b) the finite-difference quasilinearized analogs of the continuity equations
(11) and (12) are solved for én?, &p?, in which the values of | are used, and for & = 1,

n and p from step 2, also; c) the new values of n?t! = n? + snd, p¥+? = p2 + §p, as well

as of Apttt, Ap£+1, Fnltt, Fp2+l, £ = % + 1 are found; d) the substeps b and c from step 3
are repeated either a fixed number of times (usually twice) or until the required converg-
ence is obtained; 4) steps 2 and 3 of the two-step algorithm are continued until the re-
quired accuracy is achieved.

We shall examine the results obtained for a test example. The described universal al-
gorithm of multidimensional analysis of unipolar semiconductor devices was initially imple-
mented in the COSMOS program for the two-dimensional model of MIS transistors and then em-
bedded in the universal program PNAIIL [23] with only the process for selecting the initial
approximation being simplified.

In the COSMOS program one of the variants of the general procedure described in [24]
was used as the initial approximation. To simplify the algorithm it was assumed that quasi-
equilibrium was absent only for electrons in the substrate for the region x < xj (for an n-
channel transistor, Fig. 2). The simplified equation of continuity v2%n = Rn/unn in this re-
gion was solved sequentially with the quasilinearized Poisson equation for the entire device.
Thus the initial approximation was selected by a method of Gummel type, since at each full
iteration only the quasilinear Poisson equation was solved [21]. After the starting al-
gorithm converged, the main algorithm continued to step 3. The solution was then conducted
according to the universal algorithm described above. We note that special efforts are made
in selecting the starting approximation to satisfy at the outset the boundary conditions at
the interface of the two media. Chebyshev's cyclical method was used to solve all systems
of linear equations [25]. The traditional normalization of the variables was used in implement-
ing the algorithm [1].

The structure of the MOS transistor analyzed is shown in Fig. 2. The surface concentra-
tions of the test device are as follows: for the source NiM@X = (0,12:1027, substrate Ny =
0.12:10%22, drain NgM@X = 0.12:10%?7 1/m®, and the dimensions are XLp = 5, YLp = 20, xj = 1.5,
2co ~ 12, lg -~ 14, tox = 0.1 pm.

In the test example described, illustrating the quality of the algorithm on coarse grids,
for simplicity it is assumed that pi = DSt = 0, RS(p, n, ¥) = qA(pn — 1), R = Rp = Rp and are
fixed with the help of the Schockley—Reed—Hall model (formula (6) from [1]).

The results of the calculation of the electrostatic potential and the density of mobile
carriers n and p at the interface, obtained for different biases, are presented in Fig. 3.
The main feature of the given structure is the overlapping of the regions of the drain and
sink by the gate (g > fco). This largely determines the behavior of the basic variables
¥, n, and p. Figure 3b (curves 1 and 2) illustrates the formation of inversion layers (n >>
Na) for a structure with smooth p—n junctions of the drain and sink. It is evident from
Fig. 3b, c¢ (curves 1 and 2) that the mass-action law (pn = nj2) is obeyed in these cases
(Ve = 0 V) quite accurately. Figure 3a, b (curves 3) show the mutual effect of both the gate
and the drain on the physical processes in the structure of the applied voltage. A peculiar-
ity here is the presence of a surge in the basic variables y.and nat the surface of the drain,
caused by the smoothness of the p—n junction of the drain and overlapping of the gate. As
can be seen {Fig. 3b, c, curves 3), in this case the mass action law is not obeyed, which
is not unexpected here (Fig. 7 of [13]).

*There is a misprint in [1] in step 3 of the generalized two-step VRS method. The phrase
"where £ is the number of the VRS iteration for subsystem II" should be replaced by '"where %
is the number of VRS iteration for subsystem I."
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The numerical analysis was carried out for a grid which is uniform along the y axis and
quasiuniform along the x axis with 33 x 29 nodes in the semiconductor. The step along x in
the oxide was chosen to be uniform (the number of points was equal to 10). In the semicon-
ductor the step was chosen to be quasiuniform along the x axis (18 equidistant points were
chosen in the region 0 £ x £ xj). Thus the spatial grid is quite coarse for the structure

described with a long channel. The construction of such grids, naturally, does not require
any special qualifications of the user.
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Figure 4 illustrates the convergence of the algorithm developed, deliberately obtained
for the slowest case m = 1, & = 1 (algorithm of Gummel type) and illustrating its high effi-
ciency and reliability on a coarse grid. We note that as the channel becomes shorter, as
a rule, the convergence of the algorithm accelerates. For small biases of the gate and drain
its convergence is of the quadratic type, which also indicates the quite high quality of the
initial approximation obtained and is in agreement with the computer experiments for a bipolar
transistor [261.

NOTATION

Y, electrostatic potential; n and p, electron and hole densities; Nd and Nz, densities
of donors and acceptors; R, excess of the recombination rate over the generation rate for
holes (Rp) and electrons (Rp); RS, the rate of surface recombination; pi, space-charge density
in the insulator; Jnx, Jpx, JTx, X components of the electron current density, the hole cur-
rent density, and the total current density; q, electron charge; es, t£i, dielectric constants
of the semiconductor and insulator; nji, intrinsic density; ¢n, $p, Fermi quasilevels of elec-
trons and holes; Y7, temperature potential (equal to 0.258 V at T = 300°K); Bg, Bi, values of
B in the semiconductor and insulator; Bi,j» value of the variable B at a node of the spatial
grid labeled by the indices i and j; Qn, Qp, variables equal to njexp (—&n/¥T) and ni exp (+0p/
@r), respectively (in [1] their normalized values are used); un, electron mobility; Vs, Vg,
VD, Vss, voltages (potentials), applied to the contacts of the source, gate (more accurately
Vg = Vg — Qngs where Ppg is the difference in the work functions of the metal and semicon-
ductor), drain, and substrate; Lg, length of the gate; %co, length of the channel (the mini-
mum distance between metallurgical boundaries of the p-m junctions of the drain and source);
toxs thickness of the subgate oxide; XLp, YLD, geometrical dimensions of the device along the
X and y axes; xj, depth of the p—n junctions of the source and drain; | $y™|max, maximum value
of {|8¢¥i,j|} at the m-th Newton iteration (all nodes of the spatial grid are examined).

LITERATURE CITED

1. I. I. Abramov and V. V. Kharitonov, "Numerical analysis of transport phenomena in semi-
conductor devices and structures, 1. General principles of the construction and methods
for solving the fundamental system of equations," Inzh.-Fiz. Zh., 44, No. 2, 284-293
(1983).

2. N. Kotani and S. Kawazu, "A numerical analysis of avalanche breakdown in short-channel
MOSFET's," Solid-State Electron., 24, No. 7, 681-687 (1981).

3. E. Sano, R. Kasai, K. Ohwada, and H. Ariyoshi, "A two-dimensional analysis for MOSFET's
fabricated on buried $i0, layer," IEEE Trans., ED-27, No. 11, 2043-2050 (1980).

4. M. Gansner, M. Ilegems, P. Schwob, and M. Dutoit, "Modelisation de structures microelec-
troniques de petites dimensions," C. R. Journess electron. et microtech. limites minatur.
Lausanne (1980), pp. 93-105.

5. A. K. Owczarek,"Potential and carrier concentration distributions in MOS transistors at
punch-through,'" Phys. Status Solidi A, 54, No. 2, 761-771 (1979).

6. K. Kotani and S. Kawazu, "Computer analysis of punch-through in MOSFET's,'" Solid-State
Electron., 22, No. 1, 63-70 (1979).

7. R. Kasai and T. Kimura, "Two-dimensional structure analysis on short-channel MOS
transistors," Trans. Inst. Electron. Commun. Eng. Jpn., J72-C, No. 6, 389-396 (1979).

8. T. Toyabe and S. Asai, "Analytical models of threshold voltage and breakdown voltage of
short channel MOSFET's derived from two-dimensional analysis," IEEE Trans., ED-26, No.
4, 453-461 (1979).

9, M. S. Mock, "A two-dimensional mathematical model of the insulated-gate field-effect
transistor," Solid-State Electron., 16, No. 5, 601-609 (1973).

10. T. Toyabe, K. Ujiie, T. Okabe, M. Nagata, and M. S. Mock, "Method and application of
a two-dimensional analysis of I2L," Trans. Inst. Electron. Commun. Eng. Jpn., J62-C,
No. 3, 215-222 (1979).

11. S. A. Maiorov, A. A. Rudenko, and A. V. Shipilin, "Numerical method for solving the
system of equations for the potential and charge carriers in semiconductor structures,"
Zh. Vychisl. Mat. Mat. Fiz., 20, No. 1, 112-120 (1980).

12. R. Bank, D. J. Rose, and W. Richtner, '"Numerical methods for semiconductor device solu-
tion," IEEE Trans., ED-30, No. 9, 1031-1041 (1983).

13. D. Vandorpe, J. Borel, G. Merckel, and P. Saintot, "An accurate two-dimensional numerical
analysis of MOS transitor," Solid-State Electron., 15, No. 6, 547-557 (1972).

603



14. S. Selberherr, A. Schuetz, and H. W. Poetzl, "MINIMOS — a two-dimensional MOS transistor
analyzer," IEEE Trans., ED-27, No. 8, 1540-1550 (1980).

15. G. Merckel, "Analyse du comportement physique des dispositifs a 1'aide de programmes
numeriques," C. R. Journess electron. theme Modelis, disposit semicond., Lausanne (1977),
pp. 43-63.

16. A. S. Grove and D. J. Fitzgerald, "Surface effects on PN junction characteristics of sur-
face space charge region under nonequilibrium conditions," Solid-State Electron., 9,
783-806 (1966).

17. R. M. Barsan, '"Characteristics of the overlaid charge-coupled device," IEEE Trans., ED-26,
No. 2, 123-134 (1979).

18. A. D. Sutherland, "An algorithm for treating interface surface charge in two-dimensional
discretization of Poisson's equation for the numerical analysis of semiconductor devices
such as MOSFET's," Solid-State Electron., 23, No. 10, 1085-1087 (1980).

19. G. I. Marchuk, Methods of Computational Mathematics [in Russian], Nauka, Moscow (1977).

20. R. P. Fedorenko, 'Iterative methods for solving elliptical difference equations," Usp.
Mat. Nauk, 28, No. 2, 121-182 (1973). '

21. H. K. Gummel, "A self-consistent iterative scheme for one-dimensional steady-state trans-
istor calculations,'" IEEE Trans., ED-11, No. 10, 455-465 (1964).

22. I. I. Abramov, "Approximation of Poisson's equation in the problem of the numerical
analysis of semiconductor devices,'" Izv. Vyssh. Uchebn. Zaved., Radioelektron., 27, No.
6, 107-109 (1984).

23, I. I. Abramov, "Numerical modeling of inverters based on I%L elements taking into ac-
count the effects of high doping levels," Izv. Vyssh. Uchebn. Zaved., Radioelektron.,

27, No. 8, 16-22 (1984). ;

24. I. I. Abramov, '"Modeling of elements of bipolar integrated structures based on a discrete
physicotopological model," Candidate's Dissertation, Physicomathematical Sciences, Minsk
(1982).

25. D. Potter, Computational Methods in Physics [Russian translation}, Mir, Moscow (1975).
26. S. G. Mulyarchik and I. I. Abramov, "Selection of the initial approximation in the prob-
lem of the numerical analysis of bipolar semiconductor devices,'" Izv. Vyssh. Uchebn.

Zaved., Radioelektron., 24, No. 3, 49-56 (1981).

AN INVERSE LAPLACE TRANSFORMATION FOR SOLVING HEAT-CONDUCTION PROBLEMS
WITH DISCONTINUOUS BOUNDARY CONDITIONS OF THE SECOND KIND

V. P. Kozlov and V. S. Adamchik UDC 5117.946:536.24

An inverse Laplace transformation is found for a class of functions encountered
in heat-conduction problems with discontinuous boundary conditions.

In the solution of multidimensional axisymmetric nonstationary heat-conduction problems
[1-3] for a system of two semibounded bodies with different thermophysical characteristics
(TPC) in thermal contact in a plane wherein bounded (local) surface heat sources are operative
with arbitrarily specified laws of heat flow density measurement in the corresponding domains,
Laplace transform representations of the following form are encountered:

Lv(s):Lv(s Pu P2 Pa V) - ! : l—kieXp(—Pi-VS_)

ky, ks, ks s’ 1—kyexp (~p2Vs_)-k3 €xXp (_p3_|/.—s_) ’ (1)
v, p; >0, i=1, 2, 3.
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